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The thermocapillary flow in liquid bridges is investigated numerically. In the limit
of large mean surface tension the free-surface shape is independent of the flow
and temperature fields and depends only on the volume of liquid and the hydrostatic
pressure difference. When gravity acts parallel to the axis of the liquid bridge the shape
is axisymmetric. A differential heating of the bounding circular disks then causes a
steady two-dimensional thermocapillary flow which is calculated by a finite-difference
method on body-fitted coordinates. The linear-stability problem for the basic flow is
solved using azimuthal normal modes computed with the same discretization method.
The dependence of the critical Reynolds number on the volume fraction, gravity level,
Prandtl number, and aspect ratio is explained by analysing the energy budgets of the
neutral modes. For small Prandtl numbers (Pr = 0.02) the critical Reynolds number
exhibits a smooth minimum near volume fractions which approximately correspond
to the volume of a cylindrical bridge. When the Prandtl number is large (Pr = 4)
the intersection of two neutral curves results in a sharp peak of the critical Reynolds
number. Since the instabilities for low and high Prandtl numbers are markedly
different, the influence of gravity leads to a distinctly different behaviour. While
the hydrostatic shape of the bridge is the most important effect of gravity on the
critical point for low-Prandtl-number flows, buoyancy is the dominating factor for
the stability of the flow in a gravity field when the Prandtl number is high.

1. Introduction
Thermocapillary flows are important in many technical processes involving non-

isothermal fluid interfaces. Such flows are driven by an imbalance of the tangential
stress on the interface caused by the temperature-dependence of the surface tension
(Scriven & Sternling 1960; Levich & Krylov 1969). The thermocapillary flow is
of particular importance in the float-zone crystal-growth technique where it drives
significant fluid motion. Since an oscillatory melt flow in these systems results in
undesired concentration variations in the grown crystal (Bohm, Lüdge & Schröder
1994), model systems have been studied quite extensively in order to gain insight
into the physical processes that determine the onset of melt-flow oscillations. Most
important among the models of the float-zone process is the so-called half-zone
model. In this system adhesion and surface tension hold a finite volume of liquid in
the gap between two concentric rigid disks which are kept at different temperatures
(Kuhlmann 1999).

The presence of a dynamic liquid–gas interface is one of the major difficulties for
a numerical treatment. Therefore, several simplifying assumptions have frequently
been made. When the volume of the liquid bridge is very small, for instance, surface
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tension forces dominate and the liquid takes a nearly cylindrical shape. The linear
stability of the axisymmetric steady toroidal flow in cylindrical half-zones has been
considered by Neitzel et al. (1993) and Wanschura et al. (1995). The analysis of
Wanschura et al. (1995) provides explanations for the physical instability mechanisms
and yields a satisfactory quantitative comparison with the available experimental
data for moderately large Prandtl numbers (see e.g. Velten, Schwabe & Scharmann
1991). They accurately calculated the critical Reynolds numbers Rec characterizing
the onset of three-dimensional flow. For small Prandtl numbers (Pr � 1) typical for
crystal-growth applications they found the first instability of the axisymmetric flow
to be three-dimensional and stationary. It is caused by inertia effects. For liquids with
Prandtl numbers Pr & 1, which applies to the commonly used transparent model
fluids, the first linear instability is oscillatory and the instability is analogous to the
hydrothermal-wave instability in plane layers, first discussed by Smith & Davis (1983).
Apart from the Prandtl-number dependence, Wanschura et al. (1995) found that the
critical Reynolds number and the azimuthal wavenumber of the critical mode also
depend on the aspect ratio Γ (height/radius) of the half-zone.

For a given radius and separation of the heated disks, the shape of the liquid bridge
is determined by the volume of liquid. Non-cylindrical interfaces may also arise due
to hydrostatic pressure effects, if the length scale is sufficiently large. Experimental
evidence (Hu et al. 1994; Masud, Kamotani & Ostrach 1997; Sakurai & Hirata
1998) suggests that the critical conditions for the onset of oscillatory flows in high-
Prandtl-number liquid bridges depends very strongly on the interface shape. For liquid
volumes roughly corresponding to a cylindrical interface the critical Reynolds number
has a peaked maximum indicating a very stable flow. A theoretical explanation of
this behaviour is still lacking.

Only a few numerical investigations have addressed the stability of the flow in
non-cylindrical liquid bridges. Shevtsova & Legros (1998) simulated two-dimensional
buoyant–thermocapillary flow to determine the onset of the time-dependence in a
half-zone with Pr = 105, corresponding to an experiment using silicone oil which was
carried out in parallel. In both the numerics and the experiment a volume reduction
from the cylindrical shape led to a decrease of the critical Reynolds number. It was
not clear from the experiment, however, whether the assumption of a two-dimensional
oscillatory flow was justified. Chen & Hu (1998) determined the onset of instability
for Pr = 1, 10 and 50, neglecting gravity. They qualitatively confirmed the strong
stabilization of the two-dimensional flow found in experiments for nearly cylindrical
volumes. For Pr = 1, aspect ratios in the range 1.4 6 Γ 6 2.8, and for volumes
which differ less than 20% from cylindrical, the critical mode was found to be singly
periodic (m = 1) in the azimuthal direction. Likewise, for Pr = 10 and 50, m = 1 was
predicted to be the critical mode in the extended range of aspect ratios (1 6 Γ 6 2.8)
and for a larger range of the volume fraction. Using the same numerical method,
these calculations have been extended to low Prandtl numbers by Chen, Hu & Prasad
(1999). By an energy-stability analysis Summer et al. (2001) computed energy limits
ReE for guaranteed stability of the basic flow under gravity conditions. They compared
the numerical results with experimental data from a silicone–oil liquid bridge with
Pr = 70. Moreover, energy limits for cylindrical zones given earlier (Neitzel et al.
1991) were corrected. Yet, most of the newly obtained energy limits ReE for Pr = 1 are
significantly higher than corresponding experimental data. Recently, Lappa, Savino
& Monti (2001) reported a numerical simulation of the three-dimensional flow in
half-zones with Pr = 0.01. They considered the dependence of the critical azimuthal
wavenumber on the volume and on the aspect ratio.
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Despite the above-mentioned efforts the available numerical results for thermocapil-
lary-flow instabilities in non-cylindrical liquid bridges are scarce and do allow a
general understanding of the transition to three-dimensional flow. Hydrostatic effects,
for example, are insufficiently covered, and no work exists that can explain, in physical
terms, the particular changes of the linear stability upon a variation of the liquid
volume. Moreover, some of the cited work must be considered with care, because
critical Reynolds numbers from different publications do not agree. Possible reasons
could be the uncritical use of coarse numerical grids or inappropriate numerical
methods, particularly when the Prandtl number is high and thermal boundary layers
must be resolved.

The purpose of the present work is two-fold. A major aim is to cover the parameter
space more systematically in order to identify the factors which significantly influence
the stability of the two-dimensional flow. To that end the critical Reynolds numbers
and the most dangerous perturbation modes will be calculated by a linear stability
analysis, and the effect of the Prandtl number, aspect ratio, volume fraction and
gravity on the critical Reynolds number will be studied. Another objective is the
physical understanding of the instabilities that arise. This problem is treated by
carefully considering the local and global energy budgets of the critical modes.

After the problem formulation in § 2 the numerical methods for the linear-stability
analysis are introduced in § 3. Some basic-flow properties are discussed in § 4. Linear-
stability results are presented in § 5, which is divided into two parts. The first part
(§ 5.1) covers the flow in metallic melts which have a small Prandtl number, Pr � 1.
Transparent model fluids with Pr > 1 are treated in § 5.2. Both these subsections
have the same structure. After a discussion of the general instability mechanism, the
influence of the free-surface shape is discussed for constant aspect ratio and zero
gravity. This is followed by an investigation of the effects of gravity which affects the
flow by buoyancy and through the hydrostatic interface shape. Finally, the aspect-
ratio dependence of Rec is analysed. Section 6 closes with a summary of the results
and a comparison with previous work.

2. Problem formulation
We consider the flow of an incompressible Newtonian fluid of density ρ confined

to a liquid bridge between two parallel coaxial rigid disks of equal radii ri = R
(cf. figure 1). The length d and the radius R define the aspect ratio Γ = d/R. Like
the classical cylindrical half-zone problem (Kuhlmann 1999) the disks are heated
differentially by keeping them at constant temperatures T0 ± ∆T/2, where T0 is the
mean temperature and ∆T the temperature difference between the two disks. The
liquid volume is bounded radially by a free surface at r = h(z), where h is a unique
function of the vertical coordinate z.

The heated disks enforce free-surface temperature gradients leading to surface-
tension variations which are approximated to linear order by

σ(T ) = σ0 − γ(T − T0), (2.1)

with σ0 = σ(T0) and γ = −∂σ/∂T |T=T0
. Owing to the thermocapillary effect a fluid

motion is induced in the liquid. The flow is governed by the non-dimensional Navier–
Stokes, the continuity, and the energy equations in the Boussinesq approximation (in
which we implicitly assume a static free-surface shape):

Re(∂t +U · ∇)U = −∇P + ∇2U +
Gr

Re
Tez, (2.2a)
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Figure 1. Geometry of the liquid bridge.

Variable t z r, h U, V ,W P T V S

Scale d/U? d R U? = γ∆T/ρν γ∆T/d ∆T Vcyl = πR2d Scyl = 2πRd

Table 1. Scaling of the variables. U? is the characteristic thermocapillary velocity.

∇ ·U = 0, (2.2b)

Ma(∂t +U · ∇)T = ∇2T , (2.2c)

where we use cylindrical coordinates (r, ϕ, z) and the scales for time, lengths, velocity
U = (U,V ,W ), pressure P , temperature T , and volume of fluid V given in table 1.
∇2 is the Laplacian operator. The dimensionless parameters arising in equation 2.2
are the Reynolds, Prandtl, and Grashof numbers

Re =
U?d

ν
, P r =

ν

κ
, Gr =

gβ∆Td3

ν2
, (2.3)

where U? is the characteristic thermocapillary velocity obtained from balancing
thermocapillary and viscous forces, g the acceleration due to gravity, ν the kinematic
viscosity, κ the thermal diffusivity, and β the thermal expansion coefficient. The
Marangoni number is Ma = Re Pr.

The boundary conditions at the rigid walls of constant temperature are

U = 0
T = ±1/2

}
on z = ± 1

2
. (2.4a)

Uniqueness of the flow fields on the axis requires

∂ϕU = V
∂ϕV = −U
∂ϕW = ∂ϕT = ∂ϕP = 0

 on r = 0. (2.4b)
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The kinematic boundary, tangential-stress and heat-transfer conditions at the free
surface are

n ·U = 0
tz · (S · n) = −tz · ∇T
tϕ · (S · n) = −tϕ · ∇T
n · ∇T = 0

 on r = h(z). (2.4c)

The thermocapillary forces must be balanced by viscous tangential stresses, in non-
dimensional form S = ∇U + (∇U )T , which drive the fluid motion. The ambient gas
has been assumed to be inviscid, having negligible density, and the heat transfer into
the gas is neglected for simplicity. Some data for the effect of heat transfer can be
found in Nienhüser et al. (2000).

The vector n is the outward-directed normal vector of the free surface; tz and
tϕ denote the unit vectors tangent to the free surface in the (r, z)- and (r, ϕ)-plane,
respectively,

n =N−1(1, 0,−h′/Γ )T , tz =N−1(h′/Γ , 0, 1)T , tϕ = eϕ, (2.5)

with the normalizing denominator N = (1 + h′2/Γ 2)1/2. Note that the length scales
in the radial and axial directions differ, hence ∇ = [Γ∂r, (Γ/r)∂ϕ, ∂z].

Finally, the position r = h(z) of the axisymmetric free surface is determined by
static and dynamic forces acting normally to the free surface. Here we consider
the asymptotic limit of dominating mean surface tension γ∆T � σ0 in which the
normal-stress balance can be approximated by the Young–Laplace equation

Ps = ∇ · n+ Bo z, (2.6)

with the static Bond number Bo = ρgd2/σ0. The dimensionless static pressure dif-
ference Ps is given in units of σ0/d. In the limit (2.6) dynamic deformations of
the free surface are suppressed. Hence, the problem (2.6) of determining the shape
r = h(z) decouples from the fluid flow. Note that if dynamic surface deformations
are to be included, higher corrections to the Boussinesq approximation must be
taken into account (Nepomnyashchy & Simanovskii 1995). To solve the second-order
equation (2.6) for h(z) we assume fixed contact lines

h(z = ± 1
2
) = 1. (2.7a)

The pressure jump Ps is determined by the additional constraint of either a prescribed
fluid volume V (cf. table 1)

V =

∫ 1/2

−1/2

h2(z) dz, (2.7b)

or, equivalently, by a fixed hot-wall contact angle αh

h′(z = 1
2
) = − tan(αh − 1

2
π). (2.7c)

3. Numerical methods
3.1. Interface shape

For capillary number Ca → 0 the free surface is independent of the flow. To obtain
the static meniscus shape h(z), (2.6) is written as a system of first-order ordinary
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differential equations for the unknowns h(z), b(z) = h′(z), and Ps:

b′ = (Γ 2 + b2)

[
1

h
− (Ps − Boz)

Γ 2
(Γ 2 + b2)1/2

]
,

h′ = b,
Ps
′ = 0.

 (3.1)

The prime denotes differentiation with respect to z. The two-point boundary-value
problem (3.1) and (2.7) is solved for a prescribed hot-wall contact angle αh by a
combined shooting and relaxation method using the IMSL subroutines DB2PMS
and DB2PFD (VNI 1994). If, instead of αh, the solution for a prescribed volume V
is required, αh is varied such that (2.7b) is satisfied.

3.2. Basic flow

For small Reynolds numbers the flow in the half-zone is steady and axisymmetric
(∂t = ∂ϕ = V0 = 0). This flow is indicated by a subscript 0. Introducing the stream
function Ψ0 and the vorticity Ω0,

U0 = ∂zΨ0, (3.2a)

W0 = −ΓDΨ0, (3.2b)

Ω0 = ∂zU0 − Γ∂rW0, (3.2c)

where D ≡ ∂r + 1/r, the two-dimensional basic flow U 0 = (U0, 0,W0) and T0 must
satisfy the equations (curl of (2.2))

(Γ 2∂rD + ∂zz)Ω0 = ΓRe

(
∂zΨ0∂r −DΨ0∂z − 1

r
∂zΨ0

)
Ω0 + Γ

Gr

Re
∂rT0, (3.3a)

(Γ 2D∂r + ∂zz)T0 = ΓMa (∂zΨ0∂r −DΨ0∂z)T0, (3.3b)

(Γ 2∂rD + ∂zz)Ψ0 = Ω0. (3.3c)

The respective boundary conditions are

Ψ0 = ∂zΨ0 = 0, T0 = ± 1
2

on z = ± 1
2
, (3.4a)

Ψ0 = Ω0 = ∂rT0 = 0 on r = 0, (3.4b)

and
Ψ0 = 0

Ω0 = −2
h′′

N2
∂rΨ0 +

1

N (h′∂rT0 + ∂zT0)

Γ∂rT0 − h′

Γ
∂zT0 = 0

 on r = h(z). (3.4c)

For the numerical solution of (3.3)–(3.4) the cross-section ϕ = const. for arbitrary
axisymmetric free-surface shapes h(z) is mapped to a rectangular domain by

ξ =
r

h
, z = η, ⇒ ∂r =

1

h
∂ξ, ∂z = −ξ h

′

h
∂ξ + ∂η. (3.5)

In the body-fitted coordinates (ξ, η) the free surface is located at ξ = 1 (figure 2a,b).
The basic-state equations in body-fitted coordinates are provided in Appendix A.

The transformed system of equations (A 1) and the boundary conditions (A 2) are
discretized by second-order finite differences on a non-equidistant grid specified in
Appendix A. The resulting nonlinear difference equations are solved by Newton–
Raphson iteration with damping. By a proper ordering of the equations the band



Stability of thermocapillary flows in non-cylindrical liquid bridges 41

0.50

0.25

0

–0.25

–0.50

z

(a)

0 0.25 0.50 0.75 1.00
r

0.50

0.25

0

–0.25

–0.50

z

(b)

0 0.25 0.50 0.75 1.00
r/h (z)

0.50

0.25

0

–0.25

–0.50

(c)

0.88 0.92 0.96 1.00
r/R

z
d

0.84

Figure 2. (a) Isolines of ξ and η in the (r, z)-plane of a non-cylindrical half-zone. (b) Typical
distribution of grid points in the (ξ, η)-plane. (c) Free surface shape for Ps = 0 and Γ = 1. —,
semi-analytical catenoidal shape; •: numerical calculation with Nη = 41 (equidistant mesh).

structure of the Jacobian has been exploited for matrix inversions. Using an implicit
LU decomposition and the band-storage mode from the numerical library lapack
yields significant memory and computing savings.

3.3. Linear stability analysis

The linear stability of the axisymmetric steady basic state (U0, 0,W0, T0, P0) with
respect to arbitrary three-dimensional perturbations (u, v, w, θ, p) is governed by the
linearized problem (2.2) and (2.4),

Re(∂tu+U 0 · ∇u+ u · ∇U 0) = −∇p+ ∇2u+
Gr

Re
θez, (3.6a)

∇ · u = 0, (3.6b)

Ma (∂tθ +U 0 · ∇θ + u · ∇T0) = ∇2θ. (3.6c)

The solutions can be written as normal modes u(r, ϕ, z, t)
θ(r, ϕ, z, t)
p(r, ϕ, z, t)

 =

 û(r, z)

θ̂(r, z)
p̂(r, z)

 eµt+imϕ + c.c., (3.7)

where m is an integer azimuthal wavenumber, µ the complex growth rate, and c.c.
denotes the complex conjugate. We are left to solve (3.6) for the two-dimensional

fields x̂ = (û, θ̂, p̂) for which we apply the same discretization and coordinate mapping
as for the basic state.

The details of the resulting equations are given in Appendix B. Here it suffices to
note that the discretized system represents a generalized eigenvalue problem of the
form

A(Re,Ma,Gr, Bi, Bo, Γ , αh;m) · x̂(ri, zj) = µB(Re,Ma, Bo, Γ , αh) · x̂(ri, zj), (3.8)

with eigenvalues µ and eigenvectors x̂ composed of the field amplitudes at the grid
points. The matrix B is diagonal and singular, while A is a band-structured non-
singular matrix. The most dangerous mode, given by the solution of (3.8) with the
largest real part of the growth rate, max{Re(µ)}, is calculated by inverse iteration.
The critical Reynolds number Rec is obtained from the condition max{Re(µ)} = 0.
By inverse iteration the eigenvalue nearest to an initial estimate is accurately detected.
The physically relevant modes are identified by using, as a first step, a set of random
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initial guesses covering densely the range of reasonable complex growth rates, or by
using known growth rates as initial estimates for slightly varied parameters.

3.4. Energetics

For an understanding of the physics of the instabilities, it is useful to analyse the
rates of change of kinetic (Ekin) and ‘thermal’ energy (Eth)† of the critical perturbation
mode. The energy-change rates are obtained by multiplying (3.6a) and (3.6c) by u
and θ, respectively, and integrating over the volume occupied by the liquid. After
some algebra, kinetic and thermal energy balances normalized by the mechanical and
thermal dissipation Dkin and Dth, respectively, can be written in the form

1

Dkin

d

dt
Ekin =

1

Dkin

∫
u · ∂
∂t
u dV = −1 +

5∑
i=1

Ii +Mr +Mϕ +Mz + B, (3.9a)

1

Dth

d

dt
Eth =

1

Dth

∫
θ
∂

∂t
θ dV = −1 +

2∑
i=1

Ji, (3.9b)

where Mr , Mϕ, and Mz denote the work done by thermocapillary forces per unit time.
The work per time done by buoyant forces is B. The terms

∑
Ii = −Re/Dkin

∫
u ·(u ·∇)

U 0dV and
∑
Ji = −Ma/Dth

∫
θ(u · ∇)T0dV describe the relative mechanical and

thermal production rates due to convective transport of basic-state momentum and
temperature, respectively, by the perturbation velocity field. The individual terms in
the sums arise from the particular decomposition, e.g. into cylindrical coordinates, of
the flow fields. Detailed expressions for all contributions can be found in Appendix C.
For a discussion of the instability mechanisms it is helpful to investigate the local
distributions (densities ii and ji) of the integral terms Ii and Ji, which are defined by
Ii =

∫
iidV and Ji =

∫
jidV.

To evaluate the energy balances, the derivatives appearing in (3.9) are formulated
in analogy to the discretization of the basic-state and the linear-stability equations,
and all integrals are approximated using Simpson’s rule.

3.5. Code validation

To validate the calculation of the liquid-bridge shape we consider the catenoidal
profile hcat(z):

hcat(z) = h0 cosh

(
Γ

h0

z

)
, with h0 cosh

(
Γ/2

h0

)
= 1, (3.10)

which is an exact solution of the static meniscus problem (2.6) and (2.7) for zero-
gravity conditions (see e.g. Padday 1976). From (3.10) and for Γ = 1 one obtains
the minimum radius h0 = h|z=0 ≈ 0.8483379380. Since the mean curvature and hence
the static pressure difference is exactly zero for catenoidal shapes, we solve (2.6) with
the boundary conditions (2.7a) and Ps = 0. The result very accurately matches the
catenoid (cf. figure 2c). In particular, the numerically computed minimum radius is
h0 = 0.848337939 with a relative error of 10−9%.

In a next step, the basic-flow and linear-stability codes have been validated by
grid-refinement studies, comparison with existing data, and by checking the energy
conservation. To verify the basic state, some minimum values of the Stokes stream

† The ‘thermal’ energy must not be confused with the thermodynamic thermal energy. Eth is
merely a measure for the temperature deviation from the basic temperature field, defined in analogy
to Ekin.
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Pr = 0.02 Pr = 4

Nξ ×Nη minΨ St × 103 δNu min Ψ St × 103 δNu

Leypoldt et al. (2000) −6.31 −1.95
Present (E) 41× 41 −5.76 0.016 −1.69 0.22
Present (E) 81× 81 −6.21 0.005 −1.94 0.04
Present (E) 161× 161 −6.32 0.002 −2.03 0.008
Present (NE/40) 89× 137 −6.23 0.003 −2.03 0.008
Present (NE/80) 122× 163 −6.28 0.001 −2.03 0.003

Table 2. Minimum values of the Stokes stream function and relative error in the total Nusselt
number of the basic flow for different Prandtl numbers for a cylindrical liquid bridge and Re = 5000,
Γ = 1, Gr = 0. Equidistant grids (E) and non-equidistant grids with f = 1.1, ∆min = 10−4 and
∆max = 1/40 (NE/40) and ∆max = 1/80 (NE/80).

function ΨSt
0 = rΨ0 for different grids Nξ ×Nη are compared with literature data in

table 2. Convergence is obtained for sufficiently fine grids, the converged values being
in good agreement with the reference data. In addition, the Nusselt numbers for the
heat transfer through the hot and cold walls, Nuh and Nuc (the free-surface Nusselt
number Nusf is zero here), have been computed. They and the corresponding heat
currents Fi are defined as (dimensional quantities)

Nui =
Fi

k(∆T/d)πR2
, Fi = −k

∫
Si

∂T

∂z
dS, i ∈ [h, c], (3.11)

where k is the thermal conductivity of the liquid. Since Nuh + Nuc vanishes with
a relative error δNu =

∑
i Nui/max |Nui| which is less than 1% throughout, we

find that the thermal energy of the basic state is very accurately conserved for all
calculations presented.

Finally, for a validation of the linear stability analysis, we have successfully com-
pared our critical data with those for cylindrical liquid bridges published by Wan-
schura (1996). Quantitative comparisons are provided in § 5.1 and 5.2. In addition,
the consistency of the linear stability analysis has been proven by checking the energy
conservation (C 6) of the neutral modes. We found that the error δEkin is less than 5%
and δEth is less than 1% for small Prandtl numbers (Pr < 1). For high Prandtl num-
bers (Pr > 1) and large interface deflection a precise resolution of the perturbation
flow in the singular corners requires an extremely fine mesh (Kuhlmann, Nienhüser
& Rath 1999). To circumvent this problem, we consider a regularized version of the
linear stability problem for Pr > 1 in which the thermocapillary boundary conditions
at the free surface are smoothly matched with the rigid boundary condition at the
heated walls (cf. Kasperski & Labrosse 2000). This is accomplished by replacing the
second and third equations of (2.4c) by Robin-type mixed conditions

tz · (S · n) = −f(η)tz · ∇θ − g(η)tz · u, (3.12)

tϕ · (S · n) = −f(η)tϕ · ∇θ − g(η)tϕ · u, (3.13)

where

f(η) =


1
4
[1− cos((η − 1

2
)π/s)]2, η 6 − 1

2
+ s

1, − 1
2

+ s < η < 1
2
− s

1
4
[1− cos(( 1

2
− η)π/s)]2, η > 1

2
− s,

(3.14)
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Figure 3. Isotherms (left) and streamlines (right) of the two-dimensional flow for Bo = Gr = 0 and
Γ = 1. (a) Pr = 0.02, Re = 2000, α = 40◦; (b) Pr = 4, Re = 800, α = 40◦; (c) Pr = 0.02, Re = 2000,
α = 140◦; (d ) Pr = 4, Re = 800, α = 140◦.

and

g(η) =


arc tanh4 (1− f(η)), η 6 − 1

2
+ s

0, − 1
2

+ s < η < 1
2
− s

arc tanh4 (1− f(η)), η > 1
2
− s.

(3.15)

Note that the basic flow is not regularized and experiences the full Marangoni driving
force. A regularization within 0.2% of the free surface (s = 0.002) is kept throughout
for all linear stability calculations and Pr > 1, unless noted otherwise. The linear
stability boundaries of the unregularized system (s = 0) always differ by less than 5%
from those of the regularizated system (s = 0.002). Thus the relative error δEth is less
than 1%, while δEkin is less than 10%.

Finally, grid-parameter convergence was tested by variation of the grid-stretching
factors f and the minimum (∆min) and the maximum (∆max) grid spacings. Most
rapid convergence has been obtained by using grids satisfying 1.09 6 f 6 1.2,
5× 10−5 6 ∆min 6 5× 10−4, and 0.02 6 ∆max 6 0.03. Corresponding data for different
contact angles and Prandtl numbers are given in the respective sections together
with published reference data, whenever available. Typically, the number of radial
grid points varies in the range Nξ ≈ 40 . . . 100, while the number of axial points is
Nη ≈ 61 . . . 141.

4. Basic two-dimensional flow
The steady axisymmetric flows represent a parametric input to the linear stability

analysis. We briefly describe the characteristic properties of these flows as functions
of the contact angle αh and the Prandtl number. The dependence on the volume
fraction V is similar and can be inferred from figure 24 and table 10 in Appendix D.
For simplicity, gravity is neglected (Gr = Bo = 0). For zero-gravity conditions the
free-surface shape is symmetric with respect to z = 0 and the cold-disk contact
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Figure 4. Basic-state velocities on the free surface for different contact angles and Bo = Gr = 0,
Γ = 1: α = 40◦ (—), α = 90◦ (– –), α = 140◦ (- - -). (a) Pr = 0.02, Re = 2000, (b) Pr = 4, Re = 800.

angle equals that of the hot-disk, α = αc = αh. Figure 3 shows the isotherms and
streamlines for a representative small (α = 40◦) and large contact angle (α = 140◦) as
well as for a small (Pr = 0.02) and a large Prandtl number (Pr = 4) for unit aspect
ratio Γ = 1. Owing to the insulating free surface the isotherms are perpendicular to
the free surface. Hence, the free-surface temperature gradients near the corners are
reduced for slender liquid bridges, α < 90◦, while they are enhanced for α > 90◦.
Typical velocity profiles on the free surface are shown in figure 4. The convective
transport leads to strong temperature gradients near the cold corner. This crowding
of isotherms is significantly promoted by large contact angles. In particular, the
asymptotic scaling of the velocity field as a function of the distance from the corners
changes and the velocity gradients at the corners increase progressively with α when
α > 128.7◦ (Kuhlmann et al. 1999). Nevertheless, the conductive–viscous (Wmin

0 ∼ Re0)
and the conductive–inertial scaling (Wmin

0 ∼ Re−1/3) of the velocity peak Wmin
0 near

the cold wall predicted by Canright (1994) for low Prandtl numbers is approximately
confirmed for Pr = 0.02 (not shown).

For convex shapes (α > 90◦), the single vortex centre is shifted radially outward and
towards the mid-plane z = 0. As shown in figure 3 the vortex centre is shifted radially
inward and towards the hot wall (high Pr) or the cold wall (low Pr) on a decrease of
α, as in cylindrical bridges (see e.g. Kuhlmann 1999, pp. 84–86). In addition, the basic
vortex becomes more stretched when decreasing the contact angle for both Pr = 0.02
and Pr = 4. For high volume fraction V the streamlines become more circular. This
feature, together with the enlarged free surface area, leads to a strengthening of the
vortex indicated by an increase in the absolute value of the stream-function extremum
at the vortex core visible in figure 5.

When the aspect ratio is increased for constant contact angle the toroidal vortex
becomes elongated and a hyperbolic stagnation point may appear (figure 6). This
stagnation point separates two distinct regions of recirculation embedded in a globally
circulating flow. This property has been observed before in cavity Stokes flow by
Kelmanson & Lonsdale (1996), but can also result from a spatial instability (Laure,
Roux & Ben Hadid 1990). Here, the appearance of a hyperbolic stagnation point is
assisted by small contact angles which promote a narrowing of the bridge. Since this
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Figure 5. Minimum value of the basic-state stream function as a function of the contact angle α
for Bo = Gr = 0, Γ = 1: Pr = 0.02, Re = 2000 (—), Pr = 4, Re = 1000 (– –).
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Γ = 1.4 Γ = 2 Γ = 2.53

Figure 6. Streamlines illustrating the existence of a hyperbolic stagnation point at aspect ratios
slightly above the values given in table 3. (a) Pr = 0.02, Re = 2000, α = 40◦, 70◦. (b) Pr = 4,
Re = 800, α = 40◦, 70◦, 90◦.

behaviour represents a qualitative change in the flow topology, we give, in table 3,
some typical aspect ratios above which a hyperbolic stagnation point exists in the
flow.

5. Stability of two-dimensional flows
It has been shown by Wanschura et al. (1995) that two distinct instabilities of the

two-dimensional flows exist in cylindrical thermocapillary liquid bridges. For small
Prandtl numbers (Pr . 0.1) the instability is stationary, whereas it is oscillatory for
high Prandtl numbers (Pr & 1) (see also Chen, Lizée & Roux 1997). For this reason,
we consider these instabilities separately. If not mentioned otherwise, all calculations
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Pr = 0.02 Pr = 4
α (deg.) Re = 2000 Re = 800

40 1.93 1.34
70 3.11 1.98
90 > 2π 2.51

Table 3. Aspect ratio Γ as function of the contact angle at which a hyperbolic stagnation point
appears in the basic flow (Bo = Gr = 0).

α = 50◦
α = 30◦ α = 90◦ α = 130◦

Nξ ×Nη m = 1 m = 1 m = 2 m = 2 m = 2

59× 81 3949 2772 2545 2293 3331
72× 97 3457 2672 2473 2152 3249
92× 121 3281 2611 2434 2109 3181

119× 157 3222 2584 2422 2087 3112
extrapolated 3070 2540 2380 2060 3070
Wanschura et al. (1995) 2062

Table 4. Neutral Reynolds numbers Rec(m) for Pr = 0.02 and different contact angles α. Results
for different grids are shown together with the value obtained by Richardson extrapolation using
the r.m.s. value of the grid spacing. The parameters are Γ = 1, Bo = Gr = 0.

are performed for Gr = Bo = 0, and Γ = 1. Due to the mirror symmetry with respect
to z = 0 of (2.6), and hence of h(z), when Bo = 0 we have α = αc = αh.

5.1. Low Prandtl numbers

The critical curve for the stationary instability of the axisymmetric toroidal basic flow
at low Prandtl numbers evolves continuously with the contact angle. After having
verified, using complex arithmetic, that the growth rate is real (Im(µ) = 0), all succes-
sive computations were performed with real arithmetic for computational economy.
By solving the purely axisymmetric stability problem it was ensured, moreover, that
no instability occurs with m = 0 for the parameters used. The typical convergence
of the critical Reynolds number is given in table 4. Furthermore, we compare our
critical Reynolds numbers with those given by Chen et al. (1999) in table 5. Except
for Pr = 0.01, V = 0.8, both results are in a reasonable agreement with a maximum
deviation of ≈ 10%. Lappa et al. (2001) determined the critical Reynolds number for
Pr = 0.01, V = 1.0 by direct numerical simulation: the obvious disagreement with
the present result and the value given by Chen et al. (1999) may suggest a too coarse
numerical grid.

5.1.1. General remarks on the instability mechanism

Wanschura et al. (1995) have shown that the instability mechanism for low-Prandtl-
number cylindrical liquid bridges is essentially inertial. An a posteriori evaluation of
the kinetic energy balance confirms this mechanism, and also for deformed interfaces.
Hence the instability is independent of α. As shown in figure 7(a) the dissipation
Dkin of the perturbation flow is balanced by the total production

∑
Ii. Work done

by Marangoni forces is negligible for the kinetic energy budget. The total local
production u · (u · ∇)U 0 =

∑
Ii is shown in figure 7(b, c) for a cylindrical half-zone.

Two main regions of high energy gain are visible. One amplification peak is located
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Present Chen et al. (1999) Lappa et al. (2001)
Pr V mc Rec Rec Rec

0.001 0.6 1 3420 3130
0.001 0.8 2 2020 1990
0.001 1.0 2 1650 1560
0.001 1.2 2 1850 1810
0.01 0.6 1 2780 2810
0.01 0.8 2 2200 1880
0.01 1.0 2 1770 1550 2500
0.01 1.2 2 2030 1810

Table 5. Critical Reynolds numbers Rec for Pr = 0.001 and Pr = 0.01 as well as for different
volume fractions V and Γ = 1.2, Bo = Gr = 0.

near the centre of the basic vortex. The second region of energy supply extends from
the cold corner to the hot wall stretched along the basic flow streamlines.

A deeper understanding of the underlying mechanism can be obtained by decom-
posing the local production term u · (u · ∇)U 0 into different components. The result of
Wanschura et al. (1995) who used cylindrical coordinates (Appendix C), is recovered
in figures 8(a) (dark grey bars) and 8(b). In this decomposition the most destabilizing
term appears to be I4 = −Re ∫

V
ŵû∂rW0. The local distribution of

∫
i4 rdϕ is shown

in figure 8(b). Comparing with figure 7(b), i4 represents well the peak of
∫ ∑

ii rdϕ
near the centre of the vortex, but fails to capture the second region of destabilization
(figure 7b, c).

Alternatively, the perturbation velocity can be decomposed into components par-
allel and perpendicular to the basic flow (Albensoeder, Kuhlmann & Rath 2000):

u‖ =
(u ·U 0)U 0

U 2
0

, u⊥ = u− u‖, (5.1)

which yields the total normalized production

5∑
i=2

Ii =

5∑
i=2

I ′i =
Re

|Dkin|
∫
V

[ − u⊥ · (u⊥ · ∇U 0)− u⊥ · (u‖ · ∇U 0)

− u‖ · (u⊥ · ∇U 0)− u‖ · (u‖ · ∇U 0)] dV. (5.2)

The total energy budget using this decomposition is shown in figure 8(a) (light grey
bars). As can be seen from figure 8(c), the sum of the two local production terms∫
i′3 + i′4 rdϕ reproduces nearly perfectly the second region of amplification aligned

with the basic streamlines in figure 7(b). The amplification peak near the centre of
the vortex, however, is not caused by these terms.

The dominant term I ′4 represents the energy production by amplification of stream-
wise perturbation flow due to transport of basic-state momentum perpendicular to the
base-flow direction (the so-called lift-up mechanism). In the case of circular Couette
flow with the inner cylinder rotating, the angular momentum decreases radially out-
ward and the process associated with I ′4 is responsible for the centrifugal instability
leading to Taylor-vortex flow (cf. Drazin & Reid 1981). In the present case, the
streamlines in the region of amplification are convex, but are not circular. Bayly
(1986), however, has generalized the Rayleigh criterion (Rayleigh 1916) to inviscid
flows with closed convex streamlines. He derived a sufficient condition for centrifugal
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Figure 7. (a) Kinetic energy balance of the critical mode for α = 90◦ and Pr = 0.02, Γ = 1,
Rec = 2130, m = 2, and Bo = Gr = 0; (b) total local production

∑∫
ii rdϕ; (c) regions of high

production (shaded) together with the basic stream function (isolines) and the critical velocity field
(vectors).

instability when the circulation along a closed streamline decreases radially outward.
There is no strict mathematical criterion for the existence of a centrifugal instability
in viscous flows. However, the circulation Γ̃ =

∮
U 0 ·ds decreases radially outward for

the outer streamlines. Figure 9 shows the circulation as a function of the normalized
mean radius from the vortex centre r̄cs/r̄cb, defined as

r̄cs =

∮
rcs ds∮

ds

, r̄cb =

∮
rcb d∂A∮

d∂A

.

Here, rcs and rcb denote the distance from the vortex centre, where the Stokes stream
function takes its minimum, to the streamline s and to the boundary of the domain ∂A,
respectively. For all Reynolds numbers we find that the magnitude of the circulation
decreases radially for sufficiently large radii. This indicates a centrifugal instability
mechanism.
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local coordinates (I ′i , light grey). (b, c). The local production terms
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for the flow in a cylindrical half-zone with Pr = 0.02, Γ = 1, Rec = 2130, m = 2, and Bo = Gr = 0.

We conclude that two different mechanisms are responsible for the inertial instability
at low Prandtl numbers. The first contribution I4 is due to the strain in the vortex
centre near the free surface (Wanschura et al. 1995; Levenstam & Amberg 1995). A
second contribution, not reported previously, is due to centrifugal effects represented
by I ′4. In the following sections we investigate how the shape of the liquid bridge
affects these two instability mechanisms.

5.1.2. Volume-of-fluid effects

The influence of the free-surface shape on the critical Reynolds numbers is in-
vestigated by varying the contact angle and keeping the Prandtl number constant.
Figure 10(a) shows the neutral curves for Pr = 0, 0.02 and 0.04. The critical wavenum-
ber is either mc = 1 or mc = 2. Additional calculations (not shown) confirm that the
neutral Reynolds numbers Rec(m) with m > 2 are always larger than those given in
figure 10(a). The critical wavenumber for slender liquid bridges and Γ = 1 is mc = 1.
On an increase in the contact angle α the wavenumber changes to mc = 2. When the
Prandtl number is increased from zero, the contact angle of the cross-over point also
increases. For larger Pr the (m = 1) curve may even reach a local minimum before
it intersects with the (m = 2)-branch. The global minimum of the envelope of the
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Figure 9. Circulation Γ̃ along closed streamlines of the two-dimensional basic flow as function of
the relative mean radius for cylindrical liquid bridges and for different Reynolds numbers indicated
by symbols. Pr = 0.02, Γ = 1, and Bo = Gr = 0.

Pr αmin (deg.) Rec(α
min) α? (deg.)

0 77 1800 36
0.02 79 2090 44
0.04 74 2850 58

Table 6. Minimum critical Reynolds numbers Rec for Pr = 0, 0.02, and 0.04 as function of α for
Γ = 1, Bo = Gr = 0 together with the corresponding αmin and the contact angle α? at which the
critical wavenumber changes from mc = 1 to mc = 2.

neutral curves occurs for moderately concave surface shapes and for m = 2. Some
characteristic quantitative data are given in table 6. Note that the general behaviour
indicated in figure 10(a) only holds up to Pr ≈ 0.055 beyond which the critical curve
becomes more complicated (Levenstam, Amberg & Winkler 2001).

It is well known that the critical wavenumber for Bo = 0 and α = 90◦ scales with
the aspect ratio approximately like mc ' 2/Γ (Preisser, Schwabe & Scharmann 1983,
experiments for large Pr; and Levenstam & Amberg 1995, and Wanschura et al. 1995,
numerics for small Pr). Thus the change from mc = 2 to mc = 1 upon a decrease in α
(figure 10a) may be interpreted here as an increase in the effective aspect ratio.

The kinetic energy balance of the most dangerous mode is shown in figure 10(b)
for a constant Reynolds number Re = 2130 = Recyl

c . For all contact angles the
instability is inertial and Marangoni work is insignificant. To elucidate the influence
of the contact angle α on the instability, we consider both the basic vortex and the
perturbation flow field at constant ϕ = ϕ0 together with the total local production∫ ∑

ii rdϕ for a constant Reynolds number Re = 2130 and for a constant wavenumber
m = mc(α = 90◦) = 2. In the plane ϕ = ϕ0 defined by a vanishing azimuthal
perturbation flow v(ϕ0) = 0, the perturbation velocity field is symmetric with respect
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Figure 10. (a) Curves of neutral stability as function of the contact angle α for different low Prandtl
numbers: Pr = 0 (—), Pr = 0.02 (– –), and Pr = 0.04 (- - -). The left curves (low α) correspond
to mc = 1 while the right curves (high α) correspond to mc = 2. (b) Kinetic energy budget of the
most dangerous modes for fixed Re = 2130 = Recyl

c , different contact angles and wavenumbers for
Pr = 0.02.

to ϕ− ϕ0 → −(ϕ− ϕ0) and consists of a single vortex. Typical situations are shown
in figure 11(a–c) for representative contact angles.

At small contact angles (α = 30◦) the basic vortex is stretched in the axial direction
and displaced towards the cold wall. The enhanced strain on the vortex due to the
geometrical constraints leads to high values of ∂rW0 near the vortex centre and hence
to a high contribution of the strain-induced instability mechanism. On the other hand,
due to the position of the basic vortex and the structure of the neutral mode, the
region of centrifugal destabilization is confined to a relatively small region near the
cold wall (cf. figure 11a). When the contact angle α increases, the basic streamlines
become more circular, indicating less strain, and the efficiency of the mechanism in
the vortex core is substantially reduced. Now, however, the centrifugal mechanism
becomes more important, because the large contact angle and the increased local
driving (Kuhlmann et al. 1999) promote the vortex flow (figure 11c).
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Figure 11. Basic-state streamlines, perturbation flow (arrows), and local production
∫ ∑

ii rdϕ
(shaded, only the positive contributions are shown) at ϕ = ϕ0 for Pr = 0.02, Re = 2130 and m = 2.
The contact angles are α = 30◦ (a), α = 70◦ (b), and α = 120◦ (c).

From the foregoing, the efficiency of the two instability mechanisms depends on the
contact angle in an opposing manner. At intermediate values of α both mechanisms are
operative leading to an optimum (minimum) critical Reynolds number Rec (figure 10).

5.1.3. Gravity effects

Gravity affects the flow in a liquid bridge in two ways. First, the hydrostatic pressure
(measured by Bo) removes the mirror symmetry of the free surface with respect to
z = 0 and, secondly, buoyancy bulk forces arise for Gr 6= 0.

While the ratio Gr/Bo depends on both experimental control parameters d and
∆T , the ratio Bd/Bo = Gr/BoRe = βσ0/γ depends only on the material parameters
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Figure 12. Pr = 0.02: (a) Critical Reynolds number as function of the static Bond number Bo
(dashed: Bd = 0, solid: Bd/Bo = 0.27) for V = 1. The remaining parameters are m = 2 and Γ = 1.
(b) Kinetic energy budget of the most dangerous modes for constant Re = Rec(Gr = Bo = 0) = 2130
and different Bond numbers Bo.

(Bd = Gr/Re is the dynamic Bond number). Therefore, we consider in this section a
constant ratio Bd/Bo = 0.27 valid for liquid tin.†

The signs of Gr and Bo distinguish heating from above (Gr, Bo > 0), i.e. the
acceleration due to gravity is directed parallel to the thermocapillary forces, from
heating from below (Gr, Bo < 0). In the subsequent figures the hot disk will always
be in the upper part. Hence, for Gr, Bo < 0 the acceleration due to gravity is directed
upwards. For small dynamic Bond numbers thermocapillary forces dominate buoyant
ones. Under this condition the basic flow is unique (Wanschura, Kuhlmann & Rath
1997).

First, we consider V = 1. In figure 12(a) the critical Reynolds number is given as

† The material parameters of liquid tin at T = 505 K are ν = 3.97 × 10−7 m2 s−1,
κ = 1.76 × 10−5 m2 s−1, σ0 = 0.62 kg s−2, γ = 2.1 × 10−4 kg s−2 K, and β = 9.0 × 10−5 K−1.
This leads to Pr ≈ 0.02 and Bd/Bo ≈ 0.27.
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Figure 13. The inertial instability mechanism for Pr = 0.02, Bd/Bo = 0.27, Re = 2130, and
m = 2 for Bo = −6 (a), Bo = −2.5 (b) and Bo = 6 (c). Representation of the basic flow, the
most dangerous mode, and the kinetic production as in figure 11. (d ) The distribution of the local
production

∫ ∑
ii rdϕ for Bo = −2.5 (b).

a function of the static Bond number for Bd/Bo = 0.27 (solid line). Over the whole
range shown the critical azimuthal wavenumber is mc = 2. At Bo = Bo? ≈ 2.5 the
stability boundary exhibits a minimum of Remin

c (Bo) = Rec(Bo
?) ≈ 2060. Hence, the

most unstable situation is obtained for a moderate heating from above. To distinguish
between the influence of surface deformation and buoyancy effects the dashed curve
shows the result when buoyancy is artificially neglected (Bd = 0). Since the two
curves do not differ much we conclude that the major factor determining the change
of stability is the deformation effect. For heating from above (Bo > 0), buoyancy
leads to an increase in the stability boundary, while for heating from below (Bo < 0)
the stability boundary is decreased. This is consistent with the result for straight
cylindrical liquid bridges (Wanschura et al. 1997).

The kinetic energy balances of the most dangerous perturbations (i.e. those with
the largest growth rate) for Re = 2130 shown in figure 12(b) confirm that buoyant
production B and Marangoni work Mr,ϕ,z are negligible compared to the production∑
Ii.
The critical Reynolds number is mainly influenced by the free-surface-shape-

induced modifications of the velocity field. For Bo = Bo?, the centre of the basic
vortex is located slightly in the colder half of the liquid bridge and suffers a signifi-
cant straining (figure 13c, d). When Bo increases from Bo? the centre of the basic
vortex shifts towards the convex part of the free surface in the lower half of the



56 Ch. Nienhüser and H. C. Kuhlmann

4000

3000

2000

–8 –4 0 4 8
Bo

Rec

(a)
4800

0.5 1.0 1.5
6

Rec (m)

(b)

3800

2800

1800

Figure 14. Pr = 0.02 and Γ = 1. (a) Critical Reynolds number Rec as function of the static
Bond number Bo for V = 0.8 (full line), V = 1 (dotted line) and V = 1.1 (dashed line) and for
Bd/Bo = 0.27. The critical azimuthal wavenumber is m = 2 in all cases. (b) Rec(m) as a function
of the relative volume V for Bo = 1.7 (full lines) and Bo = 5.3 (dashed lines) with Bd/Bo = 0.27.
For comparison, the neutral curves Re(V, m = 1, 2) for Bo = Bd = 0 are added (dotted lines). The
upper set of curves corresponds to m = 1 and, the lower set to m = 2.

bridge (figure 13c). Thereby, the cross-stream gradient of U 0 is increased in the jet
which originates from the cold corner, promoting the centrifugal instability process
(figure 13c). Owing to the convex shape of the free surface, however, the strain on
the vortex centre is less. This effect overcompensates the energy gain through the
centrifugal process, resulting in a net stabilization for large Bo. For negative Bond
numbers both the straining and the centrifugal process are weakened, because the
vortex centre moves to the mid-plane z = 0 (figure 13a).

For volumes fractions V 6= 1 a similar behaviour is found. Figure 14(a) shows the
critical Reynolds numbers as a function of Bo with Bd/Bo = 0.27 forV = 0.8,V = 1
and V = 1.1. The location of the minimum critical Reynolds number Remin

c (Bo) is
determined by the relative efficiency of the two instability mechanisms discussed
above. From § 5.1.2 for Bo = 0, the production due to centrifugal effects increases
with increasing volume V and the production due to strain decreases with V. This
also applies to constant non-zero Bond numbers Bo 6= 0. At V = 1.1 the instability
mechanism is dominated by centrifugal effects and the minimum of the critical curve
Rec(Bo) is shifted to higher Bond numbers. As can be concluded from figure 14(a)
centrifugal effects are less important forV = 0.8 and the minimum of Rec(Bo) occurs
at Bo ≈ −0.5 at which the straining effect is large.

The relative importance of centrifugal and straining effects also determines the
neutral curves Rec(V, m) for different non-zero Bond numbers as shown in figure 14(b).
For Bo = 1.7 and Bo = 5.3 the critical wavenumber is mc = 2 over the entire range of
V, unlike Bo = 0 for which also m = 1 may become critical. When Bo increases the
minima of Rec(V) are shifted towards larger values of V. This can be understood in
terms of the increasing cold-corner contact angle αc and the more convex surface shape
whenV is increased. These conditions lead to an increased centrifugal destabilization
and a reduced strain on the vortex core.

In summary, gravity modifies the linear stability boundary (Rec) in low-Prandtl-
number half-zones mainly via hydrostatic surface deformations. Buoyancy is of much
lesser importance. For Γ = 1, considered here, gravity promotes the selection of m = 2
as the critical wavenumber.
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Figure 15. Curves of neutral stability for Pr = 0.02 and Bo = Gr = 0 as function of the inverse
aspect ratio 1/Γ . The full lines indicate α = 70◦, the dashed ones α = 115◦. The azimuthal
wavenumbers of the neutral curves are m = 1, 2, 3 in increasing order from left to right, i.e. for
decreasing aspect ratio.

5.1.4. Influence of the aspect ratio

The dependence of the neutral Reynolds numbers on the inverse aspect ratio is
shown in figure 15 for a concave (α = 70◦) and a convex (α = 115◦) liquid bridge
under zero-gravity conditions. For low-Prandtl-number cylindrical liquid bridges the
neutral curves for each wavenumber m have a minimum at aspect ratios approximately
satisfying m ' 2/Γ (Wanschura et al. 1995). We find that the instability mechanisms
do not change in the range of Γ investigated, neither for slender (α = 70◦) nor for
fat bridges (α = 115◦). Also, the ordering with respect to Γ of the minima of the
neutral curves for each m remains qualitatively unchanged. Merely, the minima of the
neutral curves are slightly shifted with respect to Γ , particularly for α = 115◦. This
shift of the neutral curves can be understood in terms of an effective aspect ratio: the
scaled neck radius for concave shapes is smaller than unity and varies from hmin(α =
70◦, Γ = 0.4) = 0.92 to hmin(α = 70◦, Γ = 3) = 0.88, while a convex shape represents a
smaller effective aspect ratio, because the scaled maximum radius is larger than unity
and varies from hmax(α = 115◦, Γ = 0.65) = 1.10 to hmax(α = 115◦, Γ = 3) = 1.14.

5.2. High Prandtl numbers

For high Prandtl numbers (Pr & 1) the two-dimensional flow in cylindrical liquid
bridges becomes linearly unstable to a pair of travelling hydrothermal waves (Wan-
schura et al. 1995; Leypoldt, Kuhlmann & Rath 2000). For waves, the imaginary part
of the growth rate µ is non-zero at criticality and the amplitudes of the normal modes
(3.7) are complex. This doubles the memory demand, because complex arithmetic is
necessary. In addition, high gradients of the temperature and axial velocity of the
basic state near the hot and cold corners must be resolved. Convergence tests of the
critical Reynolds number by using different grids indicate reliable results for Pr = 4
in the range 30◦ 6 α 6 130◦ (table 7). A linear dependence of the critical Reynolds
numbers on the squared mean grid spacing ∆̄2 is obtained on the finest grids used,
enabling Richardson extrapolation.

The only linear stability data available to date are those of Chen et al. (1999). A
comparison with their results is shown in table 8. In most cases the neutral Reynolds
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α = 50◦α = 30◦ α = 90◦ α = 110◦ α = 130◦
Nξ ×Nη m = 1 m = 1 m = 2 m = 2 m = 2 m = 2

48× 71 739 1150 1443 906 713 645
65× 95 1035 1238 1431 952 754 715
71× 105 1116 1277 1433 963 770 733
81× 119 1174 1318 1435 972 785 749
93× 137 1213 1359 1438 981 796 762

Extrapolated 1350 1470 1445 1010 840 800
Wanschura et al. (1995) 1049
Leypoldt (2000) 790

Table 7. Neutral Reynolds numbers Rec(m) for Pr = 4 and several contact angles obtained on
different grids (Γ = 1, Bo = Gr = 0). The result from Leypoldt (private communication) was
obtained by numerical simulation.

Γ V Present Chen et al. (1999)

1.4 0.8 2550 2590
1.4 1.0 2490 (2340) 2590
1.4 1.2 4820 (1860) 3350
1.6 0.8 2490 2560
1.6 1.0 2140 2240
1.6 1.2 2360 (2050) 3400

Table 8. Neutral Reynolds numbers Rec(m = 1) for Pr = 1 and different volume fraction V and
aspect ratio Γ . (Bo = Gr = 0). The numbers in parentheses are values of Rec(m = 2).

numbers for Pr = 1 and m = 1 are in good agreement. However, for larger volumes
the deviations become significant and we even found a different critical wavenumber
mc = 2, in some cases. These differences are presumably due to the fully spectral
method (Chebyshev collocation) used by Chen et al. (1999) in conjunction with a
severe mode truncation and a strong smoothing (s = 0.1) which was copied from
Wanschura et al. (1995) and which extended over a length which was 50 times larger
than the present value (s = 0.002).

5.2.1. General instability mechanisms

The instability mechanism in thermocapillary flows of high-Prandtl-number fluids
when the temperature gradient is parallel to the interface was first explained by
Smith & Davis (1983), who coined the term hydrothermal wave for the instability
modes. The analysis has been extended to cylindrical liquid bridges by Wanschura
et al. (1995) who found essentially the same destabilization process leading to a
pair of azimuthally propagating hydrothermal waves. In these waves weak oscillating
flows produce large temperature fluctuations by convective transport of the basic
temperature field T0. The temperature fluctuations, in turn, drive the flow field via
the (mainly azimuthal) thermocapillary effect. Hence, the thermal energy balance
(3.9b) is crucial for an understanding of the instability process (Smith & Davis 1983;
Wanschura et al. 1995).

In our decomposition, there are two transport terms which contribute to the
production of thermal energy: j1 ∼ θu∂rT0 and j2 ∼ θw∂zT0. For Pr = 4, and also for
all larger Prandtl numbers, an extended region of high radial temperature gradients
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Figure 16. Critical mode for Pr = 4, Γ = 1, Bo = Gr = 0, and α = 90◦ (mc = 2). (a) Isosurfaces of
negative (light grey) and positive (dark grey) values of j1 and j2. (b, c) Isolines of the basic-state
temperature and perturbation velocity field together with shaded regions of negative (light grey)
and positive (dark grey) extrema of j1 + j2 at ϕ = ϕ1 (b) and at ϕ = ϕ2 (c).

∂rT0 exists in the bulk near (r, z) = (0.5h, 0) (cf. figure 3). In this region j1 takes
its maximum value. High axial gradients ∂zT0, on the other hand, occur near the
hot wall and the cold corner. The corner regions potentially promote thermal energy
production by axial transport of basic-state energy as expressed by j2.

For a cylindrical liquid bridge with α = 90◦, Pr = 4, Γ = 1, and Bo = Gr = 0,
J1 almost perfectly balances the thermal dissipation (not shown). The distribution of
the local production rates j1 and j2 of the critical mode is shown in figure 16(a),
where the extended regions of energy gain in the bulk correspond to j1. If we define
the instantaneous orientation of the wave ϕ1 by j1(r, ϕ1, 0) = maxr,ϕ{j1(r, ϕ, 0)} and
u(r, ϕ1, 0) < 0, then the secondary regions of production near the hot and cold corners
are found near ϕ2 = ϕ1 + π/2m. The perturbation flow in the plane ϕ1 (figure 16b) is
mainly radial, acting on the radial gradients of T0. This explains the major production
term J1. In the plane ϕ2 the perturbation flow consists of eddies in the hot and cold
corners (figure 16c) which act on the basic-state temperature gradients, giving rise to
minor positive and negative contributions to J1 and J2 near the hot corner and to a
sharp negative peak of j2 near the cold corner.

The structure of the critical mode and the production terms does not change
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Figure 17. Curves of neutral stability Rec(m) for high Prandtl numbers as functions of the contact
angle α. Pr = 2 (—), Pr = 4 (– –), Pr = 7 (- - -). The intersections locate the change of the critical
wavenumber mc. The curves with a positive slope correspond to m = 1 while the monotonically
decreasing curves corresponds to m = 2.

Pr αmax (deg.) Rec(α
max) Mac(α

max)

2 48 1950 3900
4 53 1390 5560
7 60 1200 8400

Table 9. Maximum values of Rec(α) and Mac(α) at α = αmax for Pr = 2, 4, 7, and Γ = 1,
Bo = Gr = 0.

qualitatively for the parameters investigated in this section, when the free-surface
shape is varied. It is the relative magnitude of the bulk production via j1 with respect
to the production near the corners which affects the critical Reynolds number.

5.2.2. Volume-of-fluid effects

To investigate the effect of the volume fraction V on the linear stability we first
neglect gravity (Bo = Gr = 0). Figure 17 shows the neutral Reynolds numbers as
functions of α for unit aspect ratio and for Pr = 2, 4, and 7. For all values of
Pr, the critical wavenumber at small contact angles is mc = 1. The corresponding
neutral curves Rec(m = 1) increase with α. On the other hand, the neutral curves
for m = 2 which are critical at large contact angles are monotonically decreasing.
At the intersection point of the two neutral curves for m = 1 and m = 2 at a given
Pr, the critical Reynolds number has a local maximum. These codimension-2 points
occur for α = 48◦ (Pr = 2), α = 53◦ (Pr = 4), and α = 60◦ (Pr = 7) (cf. table 9).
The respective maximum critical Reynolds number decreases with increasing Prandtl
number.

The change of the critical wavenumber from mc = 2 to mc = 1, when the contact
angle α is decreased, can be understood by considering the primary energy production
term j1 ∼ Maθu∂rT0 at z = 0. It is observed that the maximum of ∂rT0(r, z = 0)
moves closer to the axis r = 0 for decreasing α (figure 18a). Accordingly, the regions
of amplification due to j1 are slightly displaced towards the axis (figure 18b). Since
the perturbation velocity for modes with m = 1 need not vanish on the axis r = 0
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Figure 18. At mid-plane z = 0 and as functions of r. (a) Radial gradient of the basic-state
temperature. The contact angle is indicated by labels (α = 30◦, 60◦, 90◦, 120◦). (b) Local energy
production

∫
j1 rdϕ for m = 1 (solid) and m = 2 (dashed). The remaining parameters for both plots

are Pr = 4, Γ = 1, Bo = Gr = 0, and Re = 1000.

whereas higher modes must vanish there (B 4b), (m = 1)-modes are more effective in
extracting energy from the basic temperature field of slender liquid bridges by the
process j1 than modes with m > 1. For convex shapes, on the other hand, the region
of maximum ∂rT0(r, z = 0) arises at a larger distance from the axis and the modes
with m = 2 are more efficient regarding the J1-mechanism than those with m = 1
(figure 18b).

The relative importance of the energy transfer processes in the bulk and near the
corners can be assessed from figure 19. For two reasons the corner regions become
more important for the instability when α increases. First, the axial gradients of T0

near the corners are enhanced for large α. This is the result of the adiabatic boundary
condition on the free surface. Second, large contact angles facilitate the penetration
of perturbation eddies into the corners. The positive peak of j2 near the cold corner
increases rapidly for large α due to the large axial basic temperature gradient, but its
integral contribution remains small. In particular for modes with m = 1, it is the loss
of energy (negative production) near the hot corner that increases with α, as does the
critical Reynolds number Rec(m = 1) for convex half-zones.

5.2.3. The effect of gravity

For an investigation of gravity effects we consider the same ratio of the dynamic
to the static Bond number, Bd/Bo = 0.27, as for small Prandtl numbers (§ 5.1.3). This
is reasonable with respect to the material parameters of high-Prandtl-number fluids,
like acetone (Pr = 4.4, Bd/Bo = 0.29) or methanol (Pr = 6.9, Bd/Bo = 0.31) (sodium
nitrate used by Velten et al. (1991), has Pr = 7 and Bd/Bo = 0.08), and it facilitates
a comparison between the two cases.

In the absence of surface deformations (Bo = 0) and for dominating thermocap-
illary flow, Wanschura et al. (1997) has shown that buoyancy (|Gr| 6= 0) is nearly
always stabilizing, except for small positive values of Gr. The same holds if surface
deformations are taken into account (Bo 6= 0). To discuss the dependence on Bo, the
critical Reynolds number for constant volume V = 1 is shown in figure 20(a) as a
function of Bo. In the absence of buoyancy (Bd = 0) the critical Reynolds number
depends nearly linearly on the Bond number in the range considered. The basic flow
is stabilized for Bo > 0, whereas it is destabilized for Bo < 0. If, however, buoyancy
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Figure 20. Pr = 4. (a) Critical Reynolds number as function of the static Bond number Bo for
V = 1 (dashed: Bd = 0, solid: Bd/Bo = 0.27), mc = 2. (b) Critical Reynolds numbers Rec(m) as
function of Bo for Bd/Bo = 0.27 and V = 1.1 (dotted, mc = 2), V = 1 (dashed, mc = 2), and
V = 0.8 (solid, positive slope: m = 1, negative slope: m = 2).

is accounted for (Bd/Bo = 0.27) the critical Reynolds number Rec(Bo) exhibits a
clear minimum near Bo = 0. For heating from above (Bo > 0) the flow stabilization
due to Bo is enhanced and for heating from below (Bo < 0) the stabilizing action of
buoyancy overcomes the destabilization due to the shape effect, except for very small
negative Bo, where Rec takes its minimum value. We conclude that buoyancy forces
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Figure 21. Pr = 4: Isotherms (lines) and velocity field (arrows) of the basic flow. (a, c): Heating
from below (Bo = −6), Bd = 0 (a) and Bd/Bo = −0.27 (c), respectively. (b, d): Heating from above
(Bo = 6), Bd = 0 (b) and Bd/Bo = 0.27 (d ), respectively. The remaining parameters are V = 1 and
Re = 1000.

play the dominant role for the critical Reynolds number whereas hydrostatic surface
deformations are of lesser importance when Bd/Bo = 0.27.

Figure 21 shows the effect of gravity on the basic flow and the temperature field. As
a result of the deformation effect for Bo 6= 0 the centre of the basic toroidal vortex is
displaced from its position at Bo = 0 towards the free surface where it bulges outward
(convex part of the free surface, see figure 21a, b). Since the temperature field depends
sensitively on the velocity field for high Prandtl numbers, this displacement causes a
modification of the gradient ∂rT0 in the bulk near z = 0: As seen from figure 22(a),
∂rT0 is slightly reduced in magnitude if Bo increases from zero. This explains the weak
stabilization due to the shape effect (see figure 20a). It has been shown before that
buoyancy effects are stronger than deformation effects for Bd/Bo = 0.27 (compare
also figure 22b). This can also be seen from figure 21(c, d) in which the return flow
near the axis is strongly enhanced for heating from below as compared to figure
21(a, b), while it is reduced near the axis, due to the stable thermal stratification when
the heating is from above. In both cases, however, ∂rT0 is reduced in the region around
r ≈ 0.5 such that the efficiency of the primary instability mechanism is reduced, which
explains the minimum of Rec in figure 20(a).

Critical curves Re(Bo, Bd/Bo = 0.27) for several volume fractions are shown in
figure 20(b). The critical curve for an increased volume V = 1.1 does not differ
qualitatively from that for V = 1. Merely, the threshold for mc = 2 is reduced.
However, when the volume is reduced a codimension-2 point appears near Bo = 0.
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Figure 22. Radial gradients of the basic-state temperature at z = 0 shown for Bo = 0 (—–), Bo = −6
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Figure 23. Curves of neutral stability for Pr = 4 and Bo = Gr = 0 as function of the inverse aspect
ratio 1/Γ . The full lines indicate α = 70◦ and the dashed ones α = 110◦. The azimuthal wavenumber
of the neutral curves increases for each set of curves with decreasing aspect ratio from left to right
as m = 1, 2, 3, 4.

For V = 0.8, for example, the critical mode has m = 1 when Bo . 0 and m = 2 when
Bo & 0. From § 5.2.2 both a small volume fraction (small contact angle) and heating
from below lead to high values of ∂rT0 at small radii. This situation promotes m = 1
modes. When the heating is from above and the contact angle is large, on the other
hand, the highest radial temperature gradients arise at larger distance from the axis
and the neutral mode for m = 2 is more effective.

In summary, the effect of buoyancy on the linear stability boundary is much
stronger for Bd/Bo = 0.27 than the hydrostatic deformation effect. The efficiency of
the instability mechanism is closely related to the high radial gradients of T0 in the
bulk, which are determined by the return flow of the thermocapillary vortex.

5.2.4. Influence of the aspect ratio

The dependence of the linear stability boundary on the aspect ratio is shown in
figure 23 for Pr = 4 under zero gravity for α = 70◦ and α = 110◦. The ordering of



Stability of thermocapillary flows in non-cylindrical liquid bridges 65

the neutral curves with respect to the wavenumber m = 1, 2, 3, 4 (the smaller Γ the
larger m) is in agreement with numerical results for cylindrical half-zones (Wanschura
et al. 1995, Bo = Gr = 0) and experimental results for nearly cylindrical half-zones
(Velten et al. 1991, Bo 6= 0, Gr 6= 0). Apart from changes in magnitude and shape, the
neutral curves are found to shift towards larger values of Γ−1 when the contact angle
is decreased from α = 110◦. For α below 70◦ the shift of the neutral curves is even
larger. The same qualitative behaviour applies to small Prandtl numbers (figure 15)
and may likewise be interpreted as an increase of the effective aspect ratio when the
contact angle is decreased. For m > 2, or Γ . 1.4 (Γ−1 & 0.71), the neutral Reynolds
numbers for α = 70◦ (full lines) are larger than those for α = 110◦ (dashed). This
is in agreement with the general trend of the volume-of-fluid effect studied in § 5.2.2
for Γ = 1 (see figure 17 for m = 2). The difference between the critical Reynolds
numbers Rec(α = 70◦) and Rec(α = 110◦) (envelopes of the neutral curves) increases
with decreasing aspect ratio. Thus the volume-of-fluid effect on the critical Reynolds
number becomes larger when the aspect ratio is decreased.

In the range of Γ investigated the minima of the neutral curves approximately lie
on a straight line (∂Rec/∂Γ

−1 ≈ const.). This dependence is not obvious and it is
not known whether this applies to larger values of Γ−1. We find that the smaller V
the larger the slope (stabilization of the basic state). A plausible cause could be the
higher viscous effects on the basic vortex and the neutral mode when the contact
angle is small. Apparently this difference becomes more pronounced the larger Γ−1.

6. Summary and conclusions
The linear stability of the two-dimensional steady flow in thermocapillary half-

zones with static free-surface shape was investigated numerically. Results for the
critical Reynolds numbers Rec were obtained as functions of the volume fraction V,
the Prandtl number Pr, the aspect ratio Γ , and the Bond number Bo. The effect of
these parameters on the physical mechanisms has been highlighted by analysing the
local energy production rates.

The dependence of the critical Reynolds number on the volume fraction is markedly
different for small and large Prandtl numbers. For Γ = 1 and zero gravity, Rec(V)
takes a minimum near a volumeV ≈ 0.9 when the Prandtl number is small. For large
Prandtl numbers a maximum is found for a volume near the cylindrical one. Whereas
the minimum for small Pr is smooth, the maximum for large Pr is sharp and results
from an intersection of two neutral curves with different wavenumbers (m = 1 and
m = 2). We found that the higher the Prandtl number the sharper the local maximum
of Mac (cf. table 9). This result is in qualitative agreement with experiments of Masud
et al. (1997) who used silicon oil with Pr ≈ 25. They found a sharp variation and,
in some cases, even a sudden change of the critical Reynolds number near α ≈ 60◦
(corresponding to the extreme radius h|z=0 = 0.86). The region near the maximum is
difficult to access in experiments with silicone oils of even higher Prandtl number,
because the liquid bridge may break down (Hu et al. 1994). Moreover, the intersecting
neutral branches may both have m = 1 at higher Pr (Masud et al. 1997).

The increase in the critical azimuthal wavenumber mc with the inverse aspect ratio
is well known. The rule of thumb mcΓ ≈ 2 applies to cylindrical half-zones of low
and high Prandtl numbers (Preisser et al. 1983, Wanschura et al. 1995). Obviously,
this trend also holds for non-cylindrical liquid bridges. To account for the shape
effect, Lappa et al. (2001) suggested mcd/h|(z=0) = 2 for Pr = 0.01 and zero-gravity
conditions. This behaviour is essentially confirmed here and extended to high Pr: on
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an increase in the volume the neutral curves (for given m) as function of Γ are shifted
towards higher values of Γ , and vice versa. It should be pointed out, however, that
the rule of Lappa et al. (2001) does not always strictly hold, it merely indicates the
general trend.

The steady three-dimensional instability for small Prandtl numbers is essentially
inertial. Previous explanations of the mechanism dwelt either on the self-induced strain
in the basic vortex core caused by the toroidal vortex shape (Levenstam & Amberg
1995) or on the strain exerted by the thermocapillary shear stress (Wanschura et al.
1995). We found that, in addition, a centrifugal mechanism is important. Its relative
magnitude explains the particular dependence of the critical Reynolds number on the
shape of the liquid bridge. The centrifugal process arises near the cold corner where a
jet transports the fluid from the free surface into the bulk. The curved streamlines and
the deceleration near the cold wall promote centrifugal-flow effects. This phenomenon
is very similar to the centrifugal instability in rectangular lid-driven cavities, recently
discussed by Albensoeder et al. (2000): in cavities with a depth below the moving
lid larger than 1.207 times the width of the cavity the critical mode is stationary.
It receives its energy downstream from the jet emerging from the downstream end
of the moving lid. This centrifugal mechanism is analogous to the process in low-
Prandtl-number liquid bridges (compare figure 20 of Albensoeder et al. (2000) with
figures 11b and 13c).

The instability of high-Prandtl-number flows, caused by hydrothermal waves (Wan-
schura et al. 1995), is not altered qualitatively by the shape of the zone. The prominent
feature of these waves consists of pronounced internal temperature fluctuations which
arise in the region of large (radial) basic-state temperature gradients. The onset of
oscillations depends on the interface shape, because it affects the location and the
magnitude of the energy-providing basic-state temperature gradients, mainly through
the modified basic velocity fields, and particularly through the return flow in the bulk.

Since the character of the instabilities for small and large Prandtl numbers is very
distinct, the effect of gravity on the critical onset is different, too. For small Pr
the basic temperature field practically decouples from the flow. Buoyancy effects are
small due to the large thermal conductivity compared to convective heat transport.
The basic vortex, and hence its stability, is mainly determined by the hydrostatic
interface shape, i.e. by the hydrostatic pressure. On the other hand, for the same
ratio of buoyant forces to hydrostatic forces (Bd/Bo = 0.27), the hydrothermal-wave
instability mechanism for high Prandtl numbers is mainly affected by buoyancy rather
than by the hydrostatic deformation of the free-surface shape: the basic temperature
field is crucial for the instability mechanism, and it is susceptible to the buoyant
convective transport.

A natural extension of the present work would be the inclusion of dynamic
rather than static free-surface shapes which arise when the capillary number is non-
zero, Ca = γ∆T/σ0 6= 0. Since dynamic free-surface deformations under typical
experimental conditions are very small (O (µm)) compared to the characteristic zone
length (O(mm)) and because the instability mechanisms found are independent of
the dynamic deformability of the free surface, it can be expected that dynamic
deformations do not significantly alter the stability boundaries calculated for static
shapes.
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Appendix A. Basic-state equations in body-fitted coordinates
Using the mapping (3.5), equations (3.3) take the form(

∇̃2 − Γ 2

ξ2

)
Ω0 = ΓRe

(
h∂ηΨ0

(
∂ξ − 1

ξ

)
+ h′(∂ξ + 1)Ψ0∂ξ − hD̃Ψ0∂η
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Re
∂ξT0, (A 1a)

∇̃2T0 = ΓMa((h∂ηΨ0 + h′Ψ0)∂ξ − hD̃Ψ0∂η)T0, (A 1b)(
∇̃2 − Γ 2

ξ2

)
Ψ0 = h2Ω0, (A 1c)

where ∇̃2 and D̃ are differential operators in the body-fitted coordinates:

∇̃2 = (Γ 2 + (h′ξ)
2
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The transformed boundary conditions are

Ψ0 = ∂ηΨ0 = 0, T0 = ± 1
2

on η = ± 1
2
, (A 2a)

Ψ0 = Ω0 = ∂ξT0 = 0 on ξ = 0, (A 2b)

and

Ψ0 = 0

Ω0 = −2
h′′

hN2
∂ξΨ0 +

1

N∂ηT0

ΓN
h

∂ξT0 − h′

ΓN∂ηT0 = 0

 on ξ = 1. (A 2c)

The system (A 1) together with (A 2) is discretized by second-order finite differences
on a non-equidistant grid with prescribed minimum spacing ∆min at the rigid walls
and at the free surface. The grid is stretched geometrically by a factor f towards the
bulk up to a prescribed maximum grid spacing ∆max.† For smaller values of ξ or η,
respectively, the grid is equidistant (see figure 2b). Accordingly, the grid points are

ξ0 = 1, ξi+1 = max{0, ξi − ∆max
ξ , ξi − fiξ∆min

ξ }, i = 0, . . . , Nξ − 2,

η0 = ± 1
2
, ηj+1 = ±max{0, |ηj | − ∆max

η , |ηj | − fjη∆min
η }, j = 0, . . . ,

1

2
(Nη − 3).

Typical values are ∆min = 5×10−5 . . . 10−3, ∆max = 10−2 . . . 5×10−2, and f = 1.05 . . . 1.2.
The method allows a selective grid refinement near the cold and hot corners.

† In practice the precribed value of ∆max may be slightly modified to ensure an equidistant grid
spacing in the bulk.
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Appendix B. Linear stability equations
For axisymmetric perturbations, m = 0, the solution of (3.6) is sought in the form

of a stream function–vorticity formulation as for the basic state,

µRehω̂ =

(
∇̃2 − Γ 2

ξ2

)
ω̂ − ΓhGr

Re
∂ξθ̂

−ΓRe
[(
h∂ηΨ0

(
∂ξ − 1

ξ

)
+ h′(∂ξ + 1)Ψ0∂ξ − hD̃Ψ0∂η

)
ω̂

+

(
h∂ηψ̂

(
∂ξ − 1

ξ

)
+ h′(∂ξ + 1)ψ̂∂ξ − hD̃ψ̂∂η

)
Ω0

]
, (B 1a)

µMahθ̂ = ∇̃2θ̂ − ΓMa[((h∂ηΨ0 + h′Ψ0)∂ξ − hD̃Ψ0∂η)θ̂

+((h∂ηψ̂ + h′ψ̂)∂ξ − hD̃ψ̂∂η)Ω0], (B 1b)

0 =

(
∇̃2 − Γ 2

ξ2

)
ψ̂ − h2ω̂, (B 1c)

together with the boundary conditions

ψ̂ = ∂ηψ̂ = θ̂ = 0 on η = ± 1
2
, (B 2a)

ψ̂ = ω̂ = ∂ξθ̂ = 0 on ξ = 0, (B 2b)

and

ψ̂ = 0

ω̂ = −2
h′′

hN2
∂ξψ̂ +

1

N∂ηθ̂

0 =
h′

ΓN∂ηθ̂ − ΓN
h

∂ξθ̂

 on ξ = 1. (B 2c)

For m > 0, the problem is formulated in primitive variables. The azimuthal velocity
v̂ is eliminated using the continuity equation and the azimuthal momentum equation
is replaced by the Poisson equation for p̂ as in Wanschura et al. (1995). The linear
perturbation equations in mapped coordinates are then given by

µRehû =
1

h

[
∇̃2 +

Γ 2

ξ2

(
û+ 2ξ∂ξû− 2ξ

Γ
(h′ξ∂ξŵ − h∂ηŵ)

)]
−Γ∂ξp̂− Re((U 0 · ∇̃)û+ (û · ∇̃)U0), (B 3a)

µRehŵ = (ξh′∂ξ − h∂η)p̂+
1

h
∇̃2ŵ +

Gr

Re
hθ̂ − Re((U 0 · ∇̃)ŵ + (û · ∇̃)W0), (B 3b)

µMahθ̂ =
1

h
∇̃2θ̂ −Ma((U 0 · ∇̃)θ̂ + (û · ∇̃)T0), (B 3c)

0 = −∇̃2p̂+
Gr

Re
(h∂ηθ̂ − h′ξ∂ξθ̂)− 2Re∇̃ · ((û · ∇̃)U 0), (B 3d)
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where

û · ∇̃ = (Γ û− h′ξŵ)∂ξ + hŵ∂η,

U 0 · ∇̃ = (ΓU0 − h′ξW0)∂ξ + hW0∂η,

∇̃ · ((û · ∇̃)U 0) =

[(
Γ 2

(
∂ξ − 1

ξ

)
U0 − Γh′ξ∂ξW0

)
∂ξ + Γh∂ξW0∂η

]
û

+

[(
Γ (h∂η − h′ξ∂ξ + h′)U0 − h′ξ2

(
h

h′ξ
∂η − ∂ξ

)
W0

)
+

(
h(h∂η − h′ξ∂ξ)W0 − Γ

ξ
hU0

)
∂η

]
ŵ.

The boundary conditions in body-fitted coordinates are

û = ŵ = ∂ηŵ = θ̂ = 0 on η = ± 1
2
, (B 4a)

m = 1 : ∂ξû = ŵ = p̂ = θ̂ = 0

m > 1 : û = ŵ = p̂ = θ̂ = 0

}
on ξ = 0, (B 4b)

and

Γ û− h′ŵ = 0,

ΓN
h

∂ξθ̂ − h′

ΓN∂ηθ̂ = 0,

∂ηθ̂ +
N
h

(Γ∂ξŵ + h′∂ξû) +

(
1− h′2

Γ 2

)
h′′

NΓ
ŵ −N h′

Γ
∂ηŵ = 0,

Nm2θ̂ + (2N2 − 1)∂ξû+N2∂ξξû+
h

Γ
(2N2 − 1)∂ξηŵ

− h
′

Γ

[(
1 +

hh′

Γ 2

)
ŵ +

(
2N2 − 1− hh′

Γ 2

)
∂ξŵ +

hh′

Γ 2
∂ηŵ

+N2∂ξξŵ +
h2

Γ 2
∂ηηŵ +

h

Γ
∂ξηû

]
= 0,



on ξ = 1.

(B 4c)

Appendix C. Terms arising in the energy balance of the normal modes
The viscous and thermal energy dissipation,

Dkin =
1

2

∫
|S|2 dV

= 4π

∫ 1/2

−1/2

∫ h(z)

0

|(∇× û)|2 rd r dz + 8π

∫ 1/2

−1/2

[hh′′|ŵ|2 − Γ 2|v̂|2] dz, (C 1a)

Dth =

∫
|∇θ̂|2 dV = 4π

∫ 1/2

−1/2

∫ h(z)

0

|∇θ̂|2 rdr dz, (C 1b)

are always positive. Since the neutral modes are only determined up to an arbitrary
factor, all terms in the energy balance are normalized by the dissipation Dkin or Dth,
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Figure 24. Dependence of the extreme radius h|z=0 (– – –) and of the relative volume V (—) on
the contact angle α.

α (deg.) V h|z=0 α (deg.) V h|z=0 α (deg.) V h|z=0

20 0.496 0.573 64 0.846 0.879 108 1.110 1.080
24 0.542 0.617 68 0.870 0.899 112 1.136 1.098
28 0.583 0.654 72 0.894 0.918 116 1.163 1.115
32 0.620 0.686 76 0.918 0.936 120 1.190 1.134
36 0.653 0.716 80 0.941 0.955 124 1.219 1.152
40 0.685 0.743 84 0.965 0.973 128 1.249 1.171
44 0.715 0.769 88 0.988 0.991 132 1.280 1.189
48 0.743 0.793 92 1.012 1.009 136 1.313 1.209
52 0.770 0.816 96 1.036 1.027 140 1.348 1.228
56 0.796 0.838 100 1.060 1.044
60 0.821 0.859 104 1.085 1.062

Table 10. Dependence of the extreme radius h|z=0 and of the volume fraction V on the contact
angle α in numbers.

respectively, in order to enable a comparison of the mechanisms for different physical
parameters. The production terms, numbered consecutively, become

I1 + I2 + I3 + I4 + I5 = 4π
Re

Dkin

∫ [
− Γ

r
|v̂|2U0 − Γ |û|2∂rU0 − û∗ŵ∂zU0

−Γŵ∗û∂rW0 − |ŵ|2∂zW0

]
rdr dz, (C 2)

J1 + J2 = 4π
Ma

Dth

∫
[−Γ θ̂∗û∂rT0 − θ̂∗ŵ∂zT0] rdr dz, (C 3)

where the asterisk denotes the complex conjugate. They describe the rate of change
of the kinetic and thermal energy of the perturbation flow by convective transport
(by the perturbations) of basic-state momentum and temperature, respectively. The
particular decomposition into I1 . . . I5 and J1, J2 is due to the cylindrical coordinate
system employed.

The terms denoted Mi represent the work per unit time done by Marangoni forces
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on the fluid at the free surface,

Mr =
4πΓ

Dkin

∫
û∗h
[
h′

Γ
(Γ∂rŵ − ∂zû)

]
dz, (C 4a)

Mϕ =
4πΓ

Dkin

∫
v̂∗h
[
Γ

(
∂r − 1

r

)
v̂ − h′

Γ
∂zv̂

]
dz, (C 4b)

Mz =
4πΓ

Dkin

∫
ŵ∗h

[
∂rŵ + h′ŵ − h′

Γ
∂zŵ

]
dz. (C 4c)

In the presence of gravity the rate of change of the kinetic perturbation energy is
obtained as

B =
4πGr

ReDkin

∫
ŵ∗θ̂ rdr dz. (C 5)

The total rate of change of energy (kinetic and thermal) is positive/negative if the
growth rate of the mode is positve/negative. Hence the sign of each contribution to the
energy-change rate (right-hand sides of (3.9)) determines whether a particular physical
mechanism (associated with the individual term) is stabilizing or destabilizing.

Because the energy balances must be satisfied exactly, the relative numerical errors,
defined as

δEkin :=

∣∣∣∣∣∂tEkin + 1−
5∑
i=1

Ii −Mr −Mϕ −Mz − B
∣∣∣∣∣ , (C 6a)

δEth := |∂tEth + 1− J1 − J2|, (C 6b)

provide an independent check of the numerics.

Appendix D. Volume fraction and extreme radii as functions of the contact
angle

In the present numerical implementation the shape of the liquid bridge is straight-
forwardly parameterized by the contact angle α. Since α is not easy to measure, the
volume fractionV is usually specified in experiments. For the purpose of comparison,
the volume fraction V and the extreme radius h(z = 0) are given in figure 24 and in
table 10 for zero-gravity conditions as functions of the contact angle.
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